
1

Symbolic NS-3 for exhaustive testing
Jianfei Shao, Minh Vu, Lisong Xu

Department of Computer Science and Engineering

University of Nebraska-Lincoln

Lincoln, NE 68588-0115

Email: {jshao, mvu, xu}@cse.unl.edu

Abstract—In this project, we propose to extend NS-3 by
leveraging symbolic execution so that it can be easily and
efficiently used to simulate a network protocol under all possible
network environments with respect to some uncertain factors.
This short paper describes the current progress and future plans.

I. INTRODUCTION

NS-3 is a popular network simulator that has been widely

used in the networking community. It is usually used to

evaluate the normal-case or special-case performance of a

network protocol, where a user simulates the protocol in some

normal or special network environments. In this project, we

consider a special type of simulations (referred to as exhaustive

testing hereinafter), where a user simulates a protocol in all

possible network environments with respect to some uncertain

factors. This type of simulations is useful for evaluating the

worse-case performance of a protocol where a user is not sure

exactly what kind of network environments lead to the worst

case, and for detecting possible design or implementation bugs

of a protocol as many bugs happen only in corner cases.

In order to conduct exhaustive testing with the current NS-

3, a user needs to enumerate and simulate a protocol in

each possible network environment (referred to as the brute

force method), which is time consuming. In this project, we

propose to extend NS-3 by leveraging symbolic execution

so that it can be easily and efficiently used for exhaustive

testing. The extended NS-3 is referred to as Symbolic NS-3,

and symbolic execution is a powerful and popular program

analysis technique widely used in the software testing and

verification community

II. DEMO

In this section, we will demonstrate the difference between

the current NS-3 and our proposed symbolic NS-3 for exhaus-

tive testing using a toy example.

A. An exhaustive testing problem

Let’s consider a network shown in Fig. 1, where two senders

and one receiver are connected by two point-to-point links.

Each sender i= 0,1 simultaneously sends a UDP packet to the

receiver. The capacity of each link is 5 Mbps. The propagation

delay di of link i = 0,1 could be any value between 1 ms and

1000 ms. An exhaustive testing problem is how to determine

the range of the possible arrival time difference a0 − a1

sender 0 receiver sender 1
link 0 link 1

Fig. 1. Network topology of the exhaustive testing problem.

considering all possible combinations of d0 and d1, where

ai denotes the arrival time at the receiver of the packet from

sender i.

B. Brute force using current NS-3

To find the range of a0 − a1 using the brute force method

with the current NS-3, we write two scripts. The shell

script repeatCurrentDemo.sh as shown in Code 1 enu-

merates all possible combinations of d0 and d1, and runs

an NS-3 simulation for each combination. The NS-3 script

currentDemo.cc as shown in Code 2 simulates the net-

work according to the link delays specified in the arguments.

Code 1. Shell script repeatCurrentDemo.sh
1 ...

2 for d0 in {1..1000}

3 do

4 for d1 in {1..1000}

5 do

6 ./waf --run "currentDemo --delay0=$d0 --delay1=$d1"

7 done

8 done

9 ...

Code 2. NS-3 script currentDemo.cc
1 ...

2 pointToPoint[0].SetDeviceAttribute("DataRate",

StringValue("5Mbps"));

3 pointToPoint[0].SetChannelAttribute("Delay", TimeValue(

Time(delay0)));

4 pointToPoint[1].SetDeviceAttribute("DataRate",

StringValue("5Mbps"));

5 pointToPoint[1].SetChannelAttribute("Delay", TimeValue(

Time(delay1)));

6 ...

In addition, we modify NS-3 file udp-server.cc to keep

track of the packet arrival times and then calculate and print

out the difference a0 −a1.

Code 3. Modified NS-3 file udp-server.cc
1 ...

2 int diff = a0 - a1;

3 std::cout << diff << std::endl;

4 ...

It takes a total of 521,900 seconds to run the code, and the

total reported range of a0 −a1 is [-999, 999] ms. All the code

is available at https://github.com/JeffShao96/Current-NS3.

https://github.com/JeffShao96/Current-NS3

2

C. Symbolic execution using Symbolic NS-3

To find the range of a0 − a1 using our proposed sym-

bolic NS-3, we write only one script. The NS-3 script

symDemo.cc as shown in Code 4 simulates the network with

two symbolic link delays, each in the range of [1, 1000]ms.

Code 4. Symbolic NS-3 script symDemo.cc
1 ...

2 pointToPoint[0].SetDeviceAttribute("DataRate",

StringValue("5Mbps"));

3 pointToPoint[0].SetChannelAttribute("SymbolicMode",

BooleanValue(true));

4 pointToPoint[0].SetChannelAttribute("DelayMin",

TimeValue(Time("1ms")));

5 pointToPoint[0].SetChannelAttribute("DelayMax",

TimeValue(Time("1000ms")));

6 pointToPoint[1].SetDeviceAttribute("DataRate",

StringValue("5Mbps"));

7 pointToPoint[1].SetChannelAttribute("SymbolicMode",

BooleanValue(true));

8 pointToPoint[1].SetChannelAttribute("DelayMin",

TimeValue(Time("1ms")));

9 pointToPoint[1].SetChannelAttribute("DelayMax",

TimeValue(Time("1000ms")));

10 ...

In addition, we modify NS-3 file udp-server.cc to

keep track of the packet arrival times, calculate the symbolic

difference a0−a1, and then calculate and print out the possible

range of the symbolic difference.

Code 5. Modified NS-3 file udp-server.cc
1 ...

2 int diff = a0 - a1;

3 uintptr_t lower;

4 uintptr_t upper;

5 s2e_get_range(diff, &lower, &upper);

6 s2e_kill_state_printf(0,"The range of diff is %ld, %ld",

lower,upper);

7 ...

It takes a total of only 33 seconds to execute the code

using a symbolic execution engine, which is several orders

of magnitude faster than the brute force method. The total

reported range of a0 −a1 is also [-999, 999] ms. All the code

is available at https://github.com/JeffShao96/Symbolic-NS3.

III. SYMBOLIC EXECUTION

This section explains the basic idea of symbolic execu-

tion [5], [3] that runs a program with symbolic variables

using a symbolic execution engine. In this project, we use the

powerful symbolic execution platform S2E [4] to symbolically

execute our proposed symbolic NS-3 in virtual machines.

The virtual machines are emulated using the QEMU machine

emulator [1] and symbolic execution is conducted using the

KLEE symbolic execution engine [2]. Different from a normal

variable that can take only a concrete value at a time, a

symbolic variable can take all possible values satisfying the

corresponding constraints,

Let’s consider the C-like pseudocode shown in Code 6 as

an example. Lines 1 and 2 define two symbolic variables d0

and d1 with the same initial constraints, and thus each of them

initially could take any value in the range of 1 and 1000. Lines

3 and 4 define two new variables a0 and a1, which depend

on variables d0 and d1 and thus are also treated as symbolic

variables with the current constraints.

Code 6. An example for symbolic execution
1 sym 1<= d0 <= 1000

2 sym 1<= d1 <= 1000

line 5: a0 > a1

line 7: a0 == a1

initial constraints

line 1: 1<= d0 <= 1000

line 2: 1<= d1 <= 1000

final constraints

line 1: 1<= d0 <= 1000

line 2: 1<= d1 <= 1000

line 5: a0 > a1 final constraints

line 1: 1<= d0 <= 1000

line 2: 1<= d1 <= 1000

line 5: a0 <= a1

line 7: a0 == a1

final constraints

line 1: 1<= d0 <= 1000

line 2: 1<= d1 <= 1000

line 5: a0 <= a1

line 7: a0 != a1

add constraint

a0 > a1

TRUE FALSE

add constraint

a0 <= a1

add constraint

a0 == a1

TRUE

add constraint

a0 != a1

FALSE

Branch 1

Branch 2 Branch 3

Fig. 2. Three branches are generated during the symbolic execution of Code 6.

3 a0 = txtime + d0 //txTime is a constant indicating the

packet transmission time

4 a1 = txtime + d1

5 if (a0 > a1){

6 //do something

7 }else if (a0==a1){

8 //do something

9 }else{

10 //do something

11 }

12 diff = a0 - a1;

When symbolic execution reaches an if statement involv-

ing symbolic variables, such as lines 5 and 7, the symbolic

execution engine checks both possibilities by forking the

current execution into two branches. For example, when line 5

if (a0>a1) is executed, S2E forks the current NS-3 virtual

machine into two NS-3 virtual machines, called branches,

where the true branch continues to line 6 with additional

constraint a0 > a1 and the false branch continues to line

7 with additional constraint a0 <= a1. Similarly for line 7

if (a0==a1).

Finally, symbolic execution stops with three branches illus-

trated in Fig. 2, where the final constraints for each branch are

also listed. Using these final constraints, we can then calculate

the possible range of symbolic variable diff defined in line

12. Specifically, the range of diff is [1, 999] ms for branch

1, [0, 0] ms for branch 2, and [-999, -1] ms for branch 3. Thus

the total range of diff is the union of these ranges and is

[-999, 999] ms. The result of the symbolic NS-3 mentioned

in Section II is obtained in a similar way.

IV. API FOR SYMBOLIC NS-3

Our current symbolic NS-3 introduces the following new

attributes to PointToPointChannel so that a user can

enable and specify symbolic delays for a point-to-point link.

New channel bool attribute SymbolicMode: A user sets

the delay of a PointToPointChannel to a symbolic

variable by setting this attribute to true. One example is line 3

of Code 4. By default, SymbolicMode is set to false.

New channel Time attributes DelayMin and DelayMax:

These two attributes define the minimum and maximum values

of the symbolic delay of a PointToPointChannel. One

example is lines 4 and 5 of Code 4. By default, DelayMin

is set to "0s" and DelayMax is set to "10s".

https://github.com/JeffShao96/Symbolic-NS3

3

V. IMPLEMENTATION

We make the following two types of changes to implement

the symbolic delay for a point-to-point link. The source code

is available at https://github.com/JeffShao96/Symbolic-NS3

A. Channel Attributes

We change both point-to-point-channel.h as

shown in Code 7 and point-to-point-channel.cc as

shown in Code 8 to implement the new channel attributes

described in the previous section.

Code 7. Modification in point-to-point-channel.h to add new attributes
1 private:

2 ...

3 bool m_symbolicDelay; // Enable or disable the

symbolic delay

4 bool m_isinitialized = false; // Check whether the

symbolic delay variable has been initialized

5 Time m_delaymax; // Maximum value of the symbolic

delay

6 Time m_delaymin; // Minimum value of the symbolic

delay

7 ...

Code 8. Modification in point-to-point-channel.cc to add new attributes
1 TypeId PointToPointChannel::GetTypeId (void) {

2 ...

3 .AddAttribute("DelayMin", "Minimum value of the

symbolic delay", TimeValue(Seconds (0)),

MakeTimeAccessor (&PointToPointChannel::m_delaymin

), MakeTimeChecker ())

4 .AddAttribute("DelayMax", "Maximum value of the

symbolic delay", TimeValue(Seconds (10)),

MakeTimeAccessor (&PointToPointChannel::m_delaymax

), MakeTimeChecker ())

5 .AddAttribute("SymbolicMode", "Enable or disable the

symbolic delay", BooleanValue (false),

MakeBooleanAccessor (&PointToPointChannel::

m_symbolicDelay), MakeBooleanChecker ())

6 ...

7 }

B. Symbolic Delay

We change point-to-point-channel.cc as shown

in Code 9 to initialize and set the range of symbolic delay for

a point-to-point link.

Code 9. An example for symbolic execution
1 bool PointToPointChannel::TransmitStart(Ptr<const Packet

> p, Ptr<PointToPointNetDevice> src, Time txTime) {

2 ...

3 if(m_symbolicDelay && !m_isinitialized){

4 uintptr_t m_delayinit = 0;

5 s2e_make_symbolic(&m_delayinit, sizeof(m_delayinit),

"m_delayinit");

6 m_delay = Time(m_delayinit);

7 if(m_delay<m_delaymin){

8 s2e_kill_state(0,"Out of Range, Lower");

9 }else if(m_delay>m_delaymax){

10 s2e_kill_state(0,"Out of Range, Upper");

11 }

12 m_isinitialized = true;

13 }

14 ...

15 }

VI. FUTURE WORK

This short paper describes our current progress. In the

future, we plan to work on the following improvements to

symbolic NS-3.

• Symbolic packet delay: We plan to provide more APIs to

support symbolic packet delays. For example, the current

PointToPointChannel has the same symbolic delay

for all the packets over the link. We plan to provide

another type of symbolic delay so that different packets

may have different symbolic delays over a link, such a

link can be used to test network protocols under different

packet delays, reordering, and jitters.

• Symbolic packet header: We plan to provide APIs so

that a packet header may have symbolic fields, such as a

symbolic destination IP address.

• Efficiency: We plan to incorporate the techniques pro-

posed in our previous work [6] to address the path

explosion problem of symbolic execution and improve

the efficiency of symbolic NS-3.

ACKNOWLEDGMENT

The work presented in this paper was supported in part by

NSF CCF-1918204.

REFERENCES

[1] F. Bellard. QEMU, a fast and portable dynamic translator. In Proceedings

of USENIX ATC, Anaheim, CA, April 2005.
[2] C. Cadar, D. Dunbar, and D. Engler. KLEE: unassisted and automatic

generation of high-coverage tests for complex systems programs. In
Proceedings of USENIX OSDI, San Diego, CA, December 2008.

[3] C. Cadar and K. Sen. Symbolic execution for software testing: three
decades later. Communications of the ACM, 56(2):82–90, February 2013.

[4] V. Chipounov, V. Kuznetsov, and G. Candea. The S2E platform: design,
implementation, and applications. ACM Transactions on Computer

Systems, 30(1), February 2012.
[5] J. King. Symbolic execution and program testing. Communications of

the ACM, 19(7):385–394, July 1976.
[6] M. Vu, L. Xu, S. Elbaum, W. Sun, and K. Qiao. Efficient systematic test-

ing of network protocols with temporal uncertain events. In Proceedings

of IEEE INFOCOM, Paris, France, April 2019.

https://github.com/JeffShao96/Symbolic-NS3

	Introduction
	Demo
	An exhaustive testing problem
	Brute force using current NS-3
	Symbolic execution using Symbolic NS-3

	Symbolic execution
	API for Symbolic NS-3
	Implementation
	Channel Attributes
	Symbolic Delay

	Future work
	References

