
Symbolic ns-3 for Efficient Exhaustive Testing:
Design, Implementation, and Simulations

Jianfei Shao, Minh Vu, Mingrui Zhang, Asmita Jayswal, Lisong Xu
School of Computing, University of Nebraska-Lincoln

https://symbolicns3.github.io

Outline
• Why Symbolic ns-3 (sym-ns-3)?
• How it works?
• How to make it more efficient?
• Conclusions

Exhaustive Testing
• What is it?

• Exhaustively test something (protocol/network) for all possible cases

• When do we need it?
• Evaluate all possible performance of a protocol/network
• Find the worst-case performance of a protocol/network
• Detect the bugs of a protocol/network

• Two senders each sends a packet to the receiver simultaneously

• Problem: What are all possible arrival time differences?
• Measurement: diff = Arrival time of pkt0 − arrival time of pkt1
• All possible link delays

• d0 ∈ [1, 1000] ms
• d1 ∈ [1, 1000] ms

Exhaustive Testing Example 1

snd0 snd1rcv
delay d0

pkt0 pkt1

delay d1

Using ns-3
• How to find all possible diff values?

• ns-3 script simulates the network for a specific (d0, d1) and reports diff
• shell script runs the ns-3 script for all possible (d0, d1)

• Simulation result
• All reported diff values = [-999, 999] ms

• Simulation time
• The simulation time for one (d0, d1) ≈ 0.5 seconds
• Total number of (d0, d1) = 1000 x 1000 = 1,000,000
• Total simulation time for all possible (d0, d1) ≈ 6 days

• Exhaustive testing is time-consuming with ns-3!

snd0 snd1rcv
d0 ∈ [1, 1000]

pkt0 pkt1

d1 ∈ [1, 1000]

Using Our sym-ns-3
• How to find all possible diff values?

• sym-ns-3 script simulates the network for a symbolic (d0, d1) and reports diff

• Simulation result
• All reported diff values = [-999, 999] ms
• Same simulation results as ns-3

• Simulation time
• The simulation time for a symbolic (d0, d1) ≈ 1 minute
• Significantly faster than ns-3

• sym-ns-3 is more efficient for exhaustive testing than ns-3

snd0 snd1rcv
d0 ∈ [1, 1000]

pkt0 pkt1

d1 ∈ [1, 1000]

Outline
• Why sym-ns-3?
• How it works?
• How to make it more efficient?
• Conclusions

sym-ns-3
• Goal

• Efficient exhaustive testing

• How?
• Based on symbolic execution
• Simulates a group of equivalent cases together instead of each case separately

Background on Symbolic Execution
• A variable may have a symbolic value (a set of values specified by

constraints) instead of only a specific value.
• When a program is executed symbolically, both branches instead of

one branch of an if statement are explored.

1. sym 1<= d0 <= 1000
2. sym 1<= d1 <= 1000
3. if (d0 > d1){
4. …// simulate accordingly
5. diff = d0 – d1;
6. } else {
7. …// simulate accordingly
8. diff = d0 – d1;
9. }

Pseudocode example Execution tree initial constraints
1<= d0 <= 1000
1<= d1 <= 1000

d0 > d1

final constraints
1<= d0 <= 1000
1<= d1 <= 1000

d0 > d1
simulation result

diff ∈ [1, 999]

final constraints
1<= d0 <= 1000
1<= d1 <= 1000

d0 <= d1
simulation result
diff ∈ [-999, 0]

yes no

Branches
• Branch 1

• All the equivalent cases following the same red execution path

• Branch 2
• All the equivalent cases following the same green execution path

Execution tree initial constraints
1<= d0 <= 1000
1<= d1 <= 1000

d0 > d1

final constraints
1<= d0 <= 1000
1<= d1 <= 1000

d0 > d1
simulation result

diff ∈ [1, 999]

final constraints
1<= d0 <= 1000
1<= d1 <= 1000

d0 <= d1
simulation result
diff ∈ [-999, 0]

yes no1. sym 1<= d0 <= 1000
2. sym 1<= d1 <= 1000
3. if (d0 > d1){
4. …// simulate accordingly
5. diff = d0 – d1;
6. } else {
7. …// simulate accordingly
8. diff = d0 – d1;
9. }

1. sym 1<= d0 <= 1000
2. sym 1<= d1 <= 1000
3. if (d0 > d1){
4. …// simulate accordingly
5. diff = d0 – d1;
6. } else {
7. …// simulate accordingly
8. diff = d0 – d1;
9. }

Branch 1 Branch 2

Symbolic execution runs equivalent cases together as branches,
and thus is more efficient for exhaustive testing.

How sym-ns-3 modifies ns-3?

variables
functions

attributes

ns-3 module

• Have explored three different methods to modify ns-3
• Currently choose method 3
• Future, both methods 2 and 3

Method 1

variables
modified functions

new variables
management functions

attributes + new

sym-ns-3 module

variables
management functions

Symbolic Class

variables
management functions

Symbolic Class

Method 3

variables
functions

attributes

sym-ns-3 module

Method 2

variables
modified functions

Symbolic Class variable

sym-ns-3 module

attributes + new

more functionalities less development

Example 1 scripts of ns3 vs sym-ns-3

... // Other setup code

uint32_t d0 = 1;
p2p[0].SetChannelAttribute("Delay",TimeValue(Time(d0)));

uint32_t d1 = 1;
p2p[1].SetChannelAttribute("Delay",TimeValue(Time(d1)));

... // Simulation execution

... // Other setup code

Ptr<Symbolic> sym0 = CreateObject<Symbolic>();
sym0->SetMinMax(1, 1000);
uint32_t d0 = sym0->GetSymbolicUintValue();
p2p[0].SetChannelAttribute("Delay",TimeValue(Time(d0)));

Ptr<Symbolic> sym1 = CreateObject<Symbolic>();
sym1->SetMinMax(1, 1000);
uint32_t d1 = sym1->GetSymbolicUintValue();
p2p[1].SetChannelAttribute("Delay",TimeValue(Time(d1)));

... // Simulation execution

snd0 snd1rcv
pkt0 pkt1

ns-3 script sym-ns-3 script (method 3)

Symbolic Class

get symbolic value

use existing attribute

a symbolic management function

d0 ∈ [1, 1000] d1 ∈ [1, 1000]

• Problem: Find all possible performance of TCP

• All possible network delays
• Forward delay: d0 ∈ [1, 1000] ms
• Backward delay: d1 ∈ [1, 1000] ms

• Measurement: Number of received data packets in 2000 ms
• Limit the max number of data packets to 2 in order to manually check

the simulation results

Exhaustive Testing Example 2 – TCP Performance

snd rcv
delay d0

delay d1

Results
• ns-3

• Take about 6 days to run 1000x1000 (d0, d1) cases, each about 0.5 seconds

• sym-ns-3
• Take about 3 hours and explore about 140 branches for symbolic (d0, d1)

• Simulation result summary
2d0 + d1

(3-way handshake)
3d0 + 2d1

(3-way handshake
+ 1 RTT)

Num of received
data packets

Comments

[1999, 3000] [2999, 5000] 0 long three-way handshake

[1000, 1998] [1999, 3497] 1 just enough time to transmit
one data packet

[3, 1331] [5, 1998] 2 otherwise

snd rcv
d0 ∈ [1, 1000]

d1 ∈ [1, 1000]

Takes only about 3 hours
for 1 millions of TCP tests

node 0 node 1

node 2

node 3

node 4

node 5

node 6

node 7

5ms

1ms

3ms

7ms

30ms

50ms

70ms
10.1.0.1 10.1.0.2

10.2.0.1

10.3.0.1

10.4.0.1

10.2.0.2 10.5.0.1 10.5.0.2

10.3.0.2

10.6.0.1 10.6.0.2

10.4.0.2

10.7.0.1 10.7.0.2

Exhaustive Testing Example 3 – IP Reachability
• Problem: Find all 10.x.x.x addresses reachable from node 0 using ping

ping

Simulation Times

• ns-3
• Take about 100 days to run 256x256x256 = 16,777,216 cases

(10.x.x.x), each about 0.5 seconds

• sym-ns-3
• Take about 15 minutes and explore about 30 branches for

symbolic IP destination 10.x.x.x

node 0 node 1

node 2

node 3

node 4

node 5

node 6

node 7

5ms

1ms

3ms

7ms

30ms

50ms

70ms
10.1.0.1 10.1.0.2

10.2.0.1

10.3.0.1

10.4.0.1

10.2.0.2 10.5.0.1 10.5.0.2

10.3.0.2

10.6.0.1 10.6.0.2

10.4.0.2

10.7.0.1 10.7.0.2

Necessary to check each IP to
detect all possible bugs

ping

Destination IP Ping RTT (ms)

10.1.0.1 0

10.1.0.2, 10.1.255.255, 10.2.0.1,
10.2.255.255, 10.3.0.1, 10.3.255.255,

10.4.0.1, 10.4.255.255
10

10.2.0.2, 10.5.0.1, 10.5.255.255 70

10.5.0.2 72

10.3.0.2, 10.6.0.1, 10.6.255.255 110

10.6.0.2 116

10.4.0.2, 10.7.0.1, 10.7.255.255 150

10.7.0.2 164

Others No reply for ping

node 0 node 1

node 2

node 3

node 4

node 5

node 6

node 7

5ms

1ms

3ms

7ms

30ms

50ms

70ms
10.1.0.1 10.1.0.2

10.2.0.1

10.3.0.1

10.4.0.1

10.2.0.2 10.5.0.1 10.5.0.2

10.3.0.2

10.6.0.1 10.6.0.2

10.4.0.2

10.7.0.1 10.7.0.2

Reported Ping RTTs

Takes only about 15 minutes
for 16 millions of ping tests

ping

Outline
• Why sym-ns-3?
• How it works?
• How to make it more efficient?
• Conclusions

Making sym-ns-3 More Efficient
• Notice we can make sym-ns-3 even more efficient

• Goal: Reduce the number of branches
• How? Redesign and rewrite simulator so that different cases share the same

execution path as much as possible

• So far, we have redesigned and rewritten
• ns-3 event schedulers (ACM Transactions on Modeling and Computer Simulation 2022)
• ns-3 routers (this WNS3 paper)

Redesign IP Routers
• Redesign the code that compares symbolic IP addresses
• Details in our WNS3 paper
• Illustrating example - find the interface for a destination IP (dst)

• original code: 5 branches (num of entries)
• rewritten code: 3 branches (num of interfaces), keeping same simulation results

if (dst matches entry1) //branch 1
return interface1

else if (dst matches entry2) //branch 2
return interface1

else if (dst matches entry3) //branch 3
return interface2

else if (dst matches entry4) //branch 4
return interface2

else //branch 5
return interface0

if (dst matches entry1 or entry2) //branch 1
return interface1

else if (dst matches entry3 or entry4) //branch 2
return interface2

else //branch 3
return interface0

original code rewritten code
entry1

entry3

other

entry2

entry4

entry1

entry3

other

entry2

entry4

Exhaustive Testing Example 3
• IP reachability example
• Add multiple additional entries to routing table
• Rewritten code reduces the number of branches

node 0 node 1

node 2

node 3

node 4

node 5

node 6

node 7

5ms

1ms

3ms

7ms

30ms

50ms

70ms
10.1.0.1 10.1.0.2

10.2.0.1

10.3.0.1

10.4.0.1

10.2.0.2 10.5.0.1 10.5.0.2

10.3.0.2

10.6.0.1 10.6.0.2

10.4.0.2

10.7.0.1 10.7.0.2

Destination Mask Interface

10.5.1.0 255.255.255.0 2

… … …

10.5.n.0 255.255.255.0 2

Additional entries to routing table of node 2

Outline
• Why sym-ns-3?
• How it works?
• How to make it more efficient?
• Conclusions

Conclusion
• sym-ns-3 for efficient exhaustive testing
• Future work

• Continue improving the efficiency
• More support for symbolic floating-point numbers

• Project webpage (code, documents): https://symbolicns3.github.io
• Acknowledgement: Supported in part by NSF-CCF-1918204

Backup Slides

Running ns-3 vs sym-ns-3

Operating System

ns-3

Operating System

Symbolic Execution Platform

Virtual Machine

sym-ns-3

Running ns-3 Running sym-ns-3

S2E symbolically executes
big software systems
https://github.com/S2E/s2e

Each branch is conceptually
a virtual machine running a
copy of sym-ns-3.

Redesign Event Schedulers
• Redesign the code that compares symbolic event timestamps
• Details in ACM Transactions on Modeling and Computer Simulation 2022
• Illustrating example - determine whether event e1 or e2 executes first

• original code: 3 branches
• rewritten code: 2 branches, while keeping same simulation results

if (e1.t < e2.t) { //branch 1
… // execute event e1
… // execute event e2

} else if (e1.t == e2.t) { //branch 2
… // execute event e1
… // execute event e2

} else { //branch 3
… // execute event e2
… // execute event e1

}

if (e1.t <= e2.t) { //branch 1
… // execute event e1
… // execute event e2

} else { //branch 2
… // execute event e2
… // execute event e1

}

original code rewritten code

before

same
time

after

before
same
time

after

	Slide Number 1
	Outline
	Exhaustive Testing
	Exhaustive Testing Example 1
	Using ns-3
	Using Our sym-ns-3
	Outline
	sym-ns-3
	Background on Symbolic Execution
	Branches
	How sym-ns-3 modifies ns-3?
	Example 1 scripts of ns3 vs sym-ns-3
	Exhaustive Testing Example 2 – TCP Performance
	Results
	Exhaustive Testing Example 3 – IP Reachability
	Simulation Times
	Reported Ping RTTs
	Outline
	Making sym-ns-3 More Efficient
	Redesign IP Routers
	Exhaustive Testing Example 3
	Outline
	Conclusion
	Backup Slides
	Running ns-3 vs sym-ns-3
	Redesign Event Schedulers

