Lincoln

Symbolic ns-3 for Efficient Exhaustive Testing:
Design, Implementation, and Simulations

Jianfei Shao, Minh Vu, Mingrui Zhang, Asmita Jayswal, Lisong Xu
School of Computing, University of Nebraska-Lincoln

https://symbolicns3.github.io

Outline

=> * Why Symbolic ns-3 (sym-ns-3)?
* How it works?
* How to make it more efficient?
* Conclusions

Exhaustive Testing

* What is it?

e Exhaustively test something (protocol/network) for all possible cases
* When do we need it?

 Evaluate all possible performance of a protocol/network

* Find the worst-case performance of a protocol/network
* Detect the bugs of a protocol/network

Exhaustive Testing Example 1

* Two senders each sends a packet to the receiver simultaneously

delay dO delay d1

* Problem: What are all possible arrival time differences?
* Measurement: diff = Arrival time of pktO — arrival time of pkt1l

* All possible link delays
e dO € [1, 1000] ms
e d1 € [1, 1000] ms

d0 € [1, 1000]

d1 e [1, 1000]

Using ns-3

* How to find all possible diff values?
* ns-3 script simulates the network for a specific (d0, d1) and reports diff
 shell script runs the ns-3 script for all possible (dO, d1)

e Simulation result
* All reported diff values = [-999, 999] ms

e Simulation time

* The simulation time for one (dO, d1) ~ 0.5 seconds
e Total number of (dO, d1) = 1000 x 1000 = 1,000,000
e Total simulation time for all possible (dO, d1) ~ 6 days

* Exhaustive testing is time-consuming with ns-3!

d0 € [1, 1000]

d1 e [1, 1000]

Using Our sym-ns-3

* How to find all possible diff values?
* sym-ns-3 script simulates the network for a symbolic (d0, d1) and reports diff

e Simulation result
* All reported diff values =[-999, 999] ms
 Same simulation results as ns-3

e Simulation time
e The simulation time for a symbolic (d0, d1) = 1 minute
 Significantly faster than ns-3

* sym-ns-3 is more efficient for exhaustive testing than ns-3

Outline

* Why sym-ns-3?

=> * How it works?
* How to make it more efficient?
* Conclusions

Ssym-ns-3

* Goal
 Efficient exhaustive testing

* How?
* Based on symbolic execution
» Simulates a group of equivalent cases together instead of each case separately

Background on Symbolic Execution

* A variable may have a symbolic value (a set of values specified by
constraints) instead of only a specific value.

* When a program is executed symbolically, both branches instead of
one branch of an if statement are explored.

Pseudocode example Execution tree initial constraints
1<=d0 <= 1000

1. Sym 1<= d0 <= 1000 1<= d1 <= 1000
2. sym 1<= dl <= 1000
3.1f (d0 > dl) { yes @ no
4. ..// simulate accordingly
5. diff = d0 - dil; final constraints final constraints
6. } else { 1<=d0 <= 1000 1<=d0 <= 1000
7. ..// simulate accordingly 1<=d1 <=1000 1<=d1 <= 1000
8. diff = d0 - dil; do > d1 do <=d1
9.} simulation result simulation result

diff € [1, 999] diff € [-999, 0]

~N

Symbolic execution runs equivalent cases together as branches,
and thus is more efficient for exhaustive testing.

—/

e Branch 1

* All the equivalent cases following the same red execution path

* All the equivalent cases following

©CoOoNOOaRr LD~

Execution tree

sym 1<=d0 <= 1000

sym 1<=d1 <= 1000

if (d0 > d1){
...Il simulate accordingly
diff = d0 - d1;

} else {

...Il simulate accordingly
diff = d0 - d1;

}

initial constraints

1<=d0 <= 1000
1<=d1 <=1000

yes @ no

final constraints
1<=d0 <= 1000
1<=d1<=1000
do > d1
simulation result
diff € [1, 999]

final constraints
1<=d0 <= 1000
1<=d1<=1000
do <=d1
simulation result
diff € [-999, 0]

Branch 1

© oo N WD =

sym 1<=d0 <= 1000

sym 1<=d1 <=1000

if (d0 > d1){
...Il simulate accordingly
diff = d0 - d1;

} else {

...Il simulate accordingly
diff = d0 - d1;

}

How sym-ns-3 modifies ns-37

* Have explored three different methods to modify ns-3

* Currently choose method 3 variables variables
both hod g management functions managemel |t functions
o
FUture’ oth methods 2 and 3 /‘ Symbolic Class Symbof|c Class
III
. . / . N
attributes — attributes + new —— / —— attributes + new — attributes
/
/
variables variables ,,' variables variables
functions modified functions I,' modified functions functions
/
/
new variables ," Symbolic Class variable
management functions
ns-3 module sym-ns-3 module sym-ns-3 module sym-ns-3 module
Method 1 Method 2 Method 3

<more functionalities less development>

Example 1 scripts of ns3 vs sym-ns-3

d0 € [1, 1000]

d1 e [1, 1000]

... Il Other setup code

uint32_t d0 = 1;
p2p[0].SetChannelAttribute("Delay", TimeValue(Time(d0)));

uint32_td1 =1;
p2p[1].SetChannelAttribute("Delay”, TimeValue(Time(d1)));

... Il Simulation execution

... [/ Other setup code Symbolic Class

Ptr<Symbolic> sym0 = CreateObject<Svmbalic>():

sym0->SetMinMax(1, 1000);

a symbolic management function

uint32_t d0 = sym0->GetSymbolicUintValue():

get symbolic value

p2p[0].SetChannelAttribute("Delay", TimeValue(Time{d0)));
Lﬁ use existing attribute

Ptr<Symbolic> sym1 = CreateObject<Symbolic>();
sym1->SetMinMax(1, 1000);

uint32_t d1 = sym1->GetSymbolicUintValue();
p2p[1].SetChannelAttribute("Delay", TimeValue(Time(d1)));

... /I Simulation execution

ns-3 script

sym-ns-3 script (method 3)

Exhaustive Testing Example 2 — TCP Performance

* Problem: Find all possible performance of TCP
" hedo Y
B

 All possible network delays
* Forward delay: d0 € [1, 1000] ms
* Backward delay: d1 € [1, 1000] ms

* Measurement: Number of received data packets in 2000 ms

* Limit the max number of data packets to 2 in order to manually check
the simulation results

.)

Results

et
°* ns-3

e Take about 6 days to run 1000x1000 (d0, d1) cases, each about 0.5 seconds
* sym-ns-3
» Take about 3 hours and explore about 140 branches for symbolic (dO, d1)

e Simulation result summary

2d0 + d1 3d0 + 2d1 Num of received Comments
(3-way handshake) | (3-way handshake data packets
+ 1 RTT)

[1999, 3000] [2999, 5000] 0

Takes only about 3 hours

[1000, 1998] [1999, 3497] 1 for 1 millions of TCP tests

[3, 1331] [5, 1998] 2

Exhaustive Testing Example 3 — [P Reachability

* Problem: Find all 10.x.x.x addresses reachable from node 0 using ping

node 2 {ims node 5
ping 30ms~10202 10501 10502
—_—> 10.2.0.1
oms 50ms 3ms
node O ' node 1 =301 5305 node 3 node 6
10.1.0.1 10.1.0.2 10.4.0.1 10.6.0.1 10.6.0.2
70ms
10.4.0.2
node 4 /ms node 7

10.7.0.1 10.7.0.2

node 2 lms node 5
Sl I [| u | at | O n Tl [[IeS oing 30ms ~10202 10501 10502
— 10.2.0.1
sms 50ms 3ms
' node 1 o= o302 nodes node 6
10.1.01 10102 104.0.1 106.0.1 10.6.0.2
70ms
° ns_3 10.4.0.2 node 4 7ms node 7
10.7.0.1 10.7.0.2

* Take about 100 days to run 256x256x256 = 16,777,216 cases

(10.x.x.x), each about 0.5 seconds
* sym-ns-3

Necessary to check each IP to
detect all possible bugs

* Take about 15 minutes and explore about 30 branches for

symbolic IP destination 10.x.x.x

node 2 lms| node 5
Re p O rte d P I n g RTTS ot W.Z.O.z 105.0.1 105.0.2
= 10.2.0.1
5ms 50ms 3ms
- nodel FEewy To302] node3 node 6
10.1.0.1 10.1.02 10.4.0.1 10601 10.6.0.2
70ms
Destination IP Ping RTT (ms)
10.4.0.2 node 4 /ms node 7
10.1.0.1 0
10.7.0.1 10.7.0.2
10.1.0.2, 10.1.255.255, 10.2.0.1,
10.2.255.255, 10.3.0.1, 10.3.255.255, 10
10.4.0.1, 10.4.255.255 W

10202, 10501,'105255255 70 Takes on|y about 15 minutes

10.5.0.2 72 for 16 millions of ping tests
10.3.0.2, 10.6.0.1, 10.6.255.255 110 \/\/\[

10.6.0.2 116
10.4.0.2, 10.7.0.1, 10.7.255.255 150

10.7.0.2 164

Others No reply for ping

Outline

* Why sym-ns-3?
e How it works?
e How to make it more efficient?

* Conclusions

Making sym-ns-3 More Efficient

* Notice we can make sym-ns-3 even more efficient
* Goal: Reduce the number of branches
 How? Redesign and rewrite simulator so that different cases share the same

execution path as much as possible
* So far, we have redesigned and rewritten
* ns-3 event schedulers (ACM Transactions on Modeling and Computer Simulation 2022)
* ns-3 routers (this WNS3 paper)

entryl
entry2
entry3
entry4

other

Redesign IP Routers

* Redesign the code that compares symbolic IP addresses

* Details in our WNS3 paper

* [llustrating example - find the interface for a destination IP (dst)
 original code: 5 branches (num of entries)
* rewritten code: 3 branches (num of interfaces), keeping same simulation results

original code

if (dst matches entryl) //branch 1
return interfacel

else if (dst matches entry2) //branch 2
return interfacel

else if (dst matches entry3) //branch 3
return interface2

else if (dst matches entry4) //branch 4
return interface2

else //branch 5
return interface®

entryl
entry2
entry3
entry4

other

rewritten code

if (dst matches entryl or entry2) //branch 1
return interfacel

else if (dst matches entry3 or entry4) //branch 2
return interface2

else //branch 3
return interfaceo®

EXh a u Stlve Te Stl n g Exa m p | e 3 . 30ms 10202 10501 10502

1ms node 5

node 0 node 1 TETE 50m510‘3-0_2 node 3 3ms node 6
e |P reaChability example 10101 10102 10401 10601 10602
70ms
* Add multiple additional entries to routing table B .
7 node 4 node 7

 Rewritten code reduces the number of branches 0701 10702

500 Original Code s

Rewntten Code
250 |

MNMumber of branches

20

200

150 |

100

20 100 130 200

n (Mumber of additional entries)

230

mm

10.5.1.0 255.255.255.0 2

10.5.n.0 255.255.255.0 2

Additional entries to routing table of node 2

Outline

* Why sym-ns-3?

* How it works?

* How to make it more efficient?
E> * Conclusions

Conclusion

* sym-ns-3 for efficient exhaustive testing

* Future work
* Continue improving the efficiency
* More support for symbolic floating-point numbers

* Project webpage (code, documents): https://symbolicns3.github.io
* Acknowledgement: Supported in part by NSF-CCF-1918204

Backup Slides

Running ns-3 vs sym-ns-3

sym-ns-3

Virtual Machine

ns-3

Symbolic Execution Platform

Operating System

Operating System

Running ns-3

Running sym-ns-3

Each branch is conceptually
a virtual machine running a
copy of sym-ns-3.

S2E symbolically executes
big software systems
https://github.com/S2E/s2e

Redesign Event Schedulers

* Redesign the code that compares symbolic event timestamps
* Details in ACM Transactions on Modeling and Computer Simulation 2022

* lllustrating example - determine whether event el or e2 executes first
 original code: 3 branches
* rewritten code: 2 branches, while keeping same simulation results

original code rewritten code
before
before same
EllE= } else { //branch 2
s?me Sfter .. // execute event e2
time .. // execute event el
} else { //branch 3 }
after .. // execute event e2
.. // execute event el
}

	Slide Number 1
	Outline
	Exhaustive Testing
	Exhaustive Testing Example 1
	Using ns-3
	Using Our sym-ns-3
	Outline
	sym-ns-3
	Background on Symbolic Execution
	Branches
	How sym-ns-3 modifies ns-3?
	Example 1 scripts of ns3 vs sym-ns-3
	Exhaustive Testing Example 2 – TCP Performance
	Results
	Exhaustive Testing Example 3 – IP Reachability
	Simulation Times
	Reported Ping RTTs
	Outline
	Making sym-ns-3 More Efficient
	Redesign IP Routers
	Exhaustive Testing Example 3
	Outline
	Conclusion
	Backup Slides
	Running ns-3 vs sym-ns-3
	Redesign Event Schedulers

